Course Type	Course Code	Name of the Course	L	Т	P	Credits
DP	NECC515	5G Communication Systems Lab	0	0	3	1.5

Course Objective

To understand 5G communication techniques and understand their principles.

Learning Outcomes

Upon successful completion of the lab, students will:

- be able to simulate advanced modulation techniques
- be able to implement OFDM system
- be able to implement MIMO OFDM system

Unit No.	Topics to be Covered	Lecture Hours	Learning Outcome		
1	Simulations of QAM and GMSK modulations	6	Acquire knowledge on advanced modulation techniques		
2	Simulation of OFDM transmitter	3	Acquire knowledge on OFDM transmitter		
3	Simulation of OFDM linear receiver with perfect channel state information	3	Acquire knowledge on OFDM receiver		
4	Simulation of Pilot-aided channel estimator for OFDM	3	Acquire knowledge on OFDM channel estimation		
5	Simulation of Transmit diversity using Alamouti coding	3	Acquire knowledge on transmit diversity for space-time coding		
6	Simulation of Receive diversity using MRC	3	Acquire knowledge of receive diversity for space-time coding		
7	Implementation of 2X2 MIMO system	3	Acquire skills on implementation of a MIMO system		
8	Simulation of ZF and MMSE equalizer for MIMO	3	Acquire understanding of equalizers for MIMO		
9	Simulation of MIMO OFDM transmitter	3	Acquire understanding of MIMO- OFDM transmitter		
10	Simulation of MIMO OFDM linear receiver	3	Acquire understanding of MIMO- OFDM linear receiver		
11	Simulation of MIMO OFDM Channel Estimation	3	Acquire understanding of MIMO- OFDM channel estimation		
12	Implementation of 5G waveform technique using SDR setup	6	Acquire skills on implementation of 5G waveform techniques over hardware		
	Total	42			

Text Books:

- 1. Tse, David and Viswanath, Pramod, *Fundamentals of Wireless Communication*, Cambridge University Press, 2005.
- 2. Goldsmith, Andrea, Wireless Communications. Cambridge University Press, 2005.

Reference Book:

1. Rappaport, Theodore S., Wireless Communications. Pearson, 2010.